Розділ другий.Перетворювачі різних типів, що використовуються в біосенсорах.
І.Електрохімічні біосенсори.
Електрохімічні біосенсори являють собою електрохімічні перетворювачі в поєднанні з ферментами (але не завжди). Ферментні електроди були найпершими описані в літературі та розроблені на комерційному доступному рівні(10).
Ферментні реакції можна вимірювати використовуючи амперометричні, потенціометричні та кондуктометричні біосенсори. Амперометричні біосенсори вимірюють електричний струм, коли напруга виникає між робочим електродом та електродом порівняння. З хімічного боку також впливають окисно-відновні реакції, що викликають струм. Найбільш поширенним прикладом такого роду аналізу є визначення глюкози з використанням глюкозоксидази:
Глюкоза + Кисень ——Глюконолактон + Перекис водню
Зміну концентрації кисню можна визначити за допомогою кисневого електроду Кларка, на якому кисень проникає крізь напівпроникну мембрану, щоб відновитися на платиновому електроді. Навпаки, зміна концентрації перекису водню спостерігається при окисленні на платиновому електроді. Обидва ці підходи мають фундаментальні недоліки. Атмосферний кисень може вносити похибки, до того ж важливим є не допустити впливу інших електроактивних компонентів.
Щоб уникнути похибок, в ферментних реакціях, використовують альтернативні джерела електронів. Ці акцептори електронів відомі як медіатори, що переносять електрони між реагентами та електродом(5). Прикладом такого медіатору слугує залізо(Fe/Fe3+):
Глюкоза + 2Fe+ ——— Глюконолактон + 2Fe + 2H+ Залізо окислюється на аноді, щоб відновитися в реакції. Сенсор не є чутливим до кисню. Найвища межа лінійного ряду може бути підвищена використанням мембрани, яка б лімітувала рівень дифузії глюкози до електрода так, що б кінетика зворотньої реакції не залежала від константи спорідненості (Km) ферменту. Принцип медіаторного амперометричного біосенсору було використано для ряду аналізів, вимірюючих спирт(1), СО(35), D–галактозу, гліколат та L–амінокислоти(14). Також є дані про використання амперометричного методу для імуноаналізу з використанням ферментного підсилення. Цей імуноаналіз побудований по типу “сендвіча”, де друге антитіло приєднано до лужної фосфатази. Лужна фосфатаза претворює NADP на NAD. NAD включається до відновлювального циклу, вмикаючи дегідрогеназу та діафоразу. Відновлювальний цикл відновлює медіатор ферріцианід, який визначається амперометрично(6).
Оксидоредуктази часто вимогають нікотинаміднуклеотиди в якості кофакторів. Ці дорогі, нестабільні, розчинні компоненти роблять структуру простих, надійних біосенсорів непрактичною.
Потенціометричний ферментний електрод характеризується тим, що різниця потенціалів формується на чутливому елементі і вона вимірюється дуже чутливим приладом, до того ж не виникає току крізь мембрану і тому рівень дифузії не є важливим. Потенціометричні сенсори, що використовуються в біосенсорах, включають іоноселективні електроди, газочутливі електроди та польові транзистори. Іоноселективні та газочутливі електроди вже широко застосовуються в клінічному аналізі(11) і знайшли місце в біосенсорах. Водневий іоноселективний електрод (рН-електрод) був використаний для аналізу пеніциліну, з використанням ферменту беталактамази, яка перетворює пеніцилін на пеніцилову кислоту. Електрод рН визначає концентрацію кислоти(25). Амонійний іоноселективний електрод було використано в поєднанні з імобілізованою уреазною мембраною для визначення сечовини в крові(39). G. Guilbault та F.R.Shu(17)використали СО2 чутливий електрод для розпізнавання іншого продукту уреазної реакції. Також відомі йодид та фторид іоноселективні елекроди як компоненти біосенсорів.
Цікавий потенціометричний імуноаналіз був описаний для антитіл до дигоксину(18). Іонофор був хімічно пов’язаний з дигоксином. Цей кон’югат був приєднували до мембрани, яка була вмонтована на чутливий кінчик звичайного потенціометричного електроду (Малюнок 5). Коли отриманий електрод вміщували до середовища, що містило іони, здатні проникати крізь мембрану, спостерігалася зміна потенцалу. До того ж, коли антитіло до дигоксину було присутнім в поєднанні з дигоксином, це призводило до зміни здатності іонофору транспортувати маркерний іон. Ця зміна потенціалу виміряна пропорційно до концентрації присутнього антитіла.
електрод затвору

ПХВ- ллівка джерело затворний виток
оксид

- дигоксин-іонофор кон’югат
- дигоксинові антитіла Малюнок 5.Іонофорний потенціометричний Малюнок 6. Будова ПТ (З Brooks S. біосенсор ( з Kress–Rogers E. та Terner A.P.F. та Terner A.P.F.“Measurement and у ”Advanses in Immunoassay for Veterinary and Control”) Food Analisis“)
Польовий транзистор (ПТ) - це перетворювач, в якому провідність напівпровідникового матеріалу контролюється електричним полем (Малюнок 6.). В нормі тут наявний лише незначний струм між джерелом та витоком, але зміна напруги відповідної полярності та величини на затворі призводять до виникнення струму між джерелом та витоком. Метал-оксидний напівпровідник ПТ з паладій/паладій оксидним затвором може бути використаний для визначення таких газів як водень, аміак, сірководень. Ці гази розпадаються на затворі з виділенням іонів водню. Біосенсор може базуватися на такому приладі, якщо фермент імобілізований на затворі. Уреаза, наприклад, була використана, щоб виділяти аміак з сечовини. Аміак потім визначався на метал-оксидному напівпровіднику ПТ(12).
Іоноселективний польовий транзистор (ІСПТ) включає іоноселективну мембрану, яка дозволяє прохід тільки одному типу іонів. рН - чутливий ПТ був використаний в поєднанні з ферментами, такими як беталактамаза та глюкозооксидаза, для розпізнавання пеніциліну та глюкози, як і очікувалося(34).
ПТ піддається мініатюризації і зберігає високу чутливість, що робить цей прилад дуже перспективним до використання in vivo(23).
Кондуктометричні біосенсори дуже рідко описуються в деталях. В цих приладах використовують дві пари ідентичних електродів. Мембрана, що містить імобілізований фермент, розташовується між однією парою електродів, коли “чиста” мембрана розташовується між іншою. Якщо є ферментна активність, то спостерігається зміна електричного опору.
ІІ.Оптичні біосенсори.
Оптоволоконні проби та сенсори мають виключну роль в медицині для in vivo та in vitro аналізу(27). Вони виглядають дійсно безпечними та біосумісними для використання всередині людського тіла. M.Goldfinch та C.R.Lowe(15) описали прилад, який може визначати клінічно важливі компоненти, такі як , пеніцилін G, сечовина та глюкоза. Чутливі до змін рН барвники, такі як бромотімол синій та бромокрезол зелений, були імобілізовані у поєднанні з відповідними ферментами на прозорих мембранах, які використовувалися на твердофазних оптоелектронних сенсорах. Ферменти, що використовувалися - це пеніцилаза, уреаза та глюкозоксидаза. Коли мала місце ферментна реакція, спостерігали зміни кольору барвника. Це фіксувалося з використанням світла відповідної довжини хвилі. Цей та інші методи, базовані на рН, страждають від притамонної їм проблеми - буферних властивостей та рН біологічних рідин.
J.C.Schultz, S.Mansoury та I.Goldstein(29) зконструювали оптоволоконний датчик для визначення глюкози, в якому поєднувалося покриття глюкози та флуоресцентноактивного декстрану з білком Конкавалін А. Активний декстран витіснявся глюкозою, датчик був зконструйований таким чином, що декстран дифундував у “поле зору” оптоволокна.(Малюнок 7)
Конкавалін А
оптоволокно Г Д Г Д Г Г Д
флуоресцентне світло Д Д Д ДД Д
збуджуюче світло Д Д Д ДД ДД Д
Д Г Г Д Г Д Г Г

Д- флуоресцентно активний декстран , Г - глюкоза
Малюнок 7. Конкурентний оптичний біосенсор на глюкозу.
Прилад був здатний визначати глюкозу на фізіологічному рівні за час, що не перевищував 10 хвилин.
Світлочутливі діоди та фотодетектори використовуються в поєднанні з волоконною оптикою для визначення поглинання, люмінесценції та флуоресценції біологічних компонентів, що розташовані на кінці оптоволокна. Сигнал є пропорційним кількості біологічного матеріалу, що лімітує чутливість маленького приладу.
Чутливість може бути підвищена , якщо дослідити зміни, які мають місце з боку оптоволокна чи світловоду і підвищити площу поверхні, що придатна для біологічного компоненту біосенсора. Світло передається по світловоду через велику кількість внутрішніх відбивань. При кожному відбитті частина світла (зникаюча хвиля) виходить до оточуючого середовища навколо провідника. Зникаюча хвиля забирає тільки фракцію з хвилі світла на поверхню, а потім знову повертається до провідника. Зміни в оптичних якостях поверхні світловода можуть певним чином вплинути на світло, що проходить по ньому. Зникаюча хвиля відчуває вплив тільки на дуже маленькій дистанції від світловода і тому на неї не впливає оточуюче середовище. Це допомагає подолати деякі проблеми з аналізом непрозорих та забарвлених розчинів, які часто не можливо виміряти в клінічному аналізі, через проблеми зі спектрофотометрією. Імуноглобулін людини (IgG)було виміряно приєднанням антисироватки до поверхні світловода та завдяки його здатності реагувати з антигеном (IgG). Підвищення кількості комплексів антисироватка-антиген викликає зміни в складі світла, що визначається фотодетектором під певним кутом до напрямку світла, що проходить крізь світловод.(33)
Інший чутливий оптичний біосенсор, який був об’єктом досліджень, використовує поверхневий плазмонний резонанс(ППР), ППР - це рух електронів на поверхні металевого провідника, викликаний дією світла певної довжини хвилі підпевним кутом. На дифракційній гратці це має ефект поглинання світлової енергії при певній довжині хвилі, яке залежить від діелектричної константи покриття у контакті з металевою поверхнею. Це викликає появу смуги в спектрі, отриманому з дифракційної гратки. Діелектрична константа залежить не тільки від змін іонного поглинання на поверхні, але і від природи біологічних молекул, що посадженні на поверхню.(19)
ІІІ. Калориметричні біосенсори.
Багато ферментних реакцій є екзотермічними, і теплота, що виділяється протягом реакції, може бути виміряна термістором чи чутливими до температури напівпровідниковими приладами. Більшість ферментних реакцій супроводжується виділенням тепла на рівні 5-100 кДж/ моль та типовою зміною температури, яку на рівні 10-2 оС можна зафіксувати(24). Цей принцип покладений в проточну модель широкого ряду аналізів клінічно важливих речовин ( Таблиця 4).
Таблиця 4. Речовини, що аналізуються ферментним термістором.

Фермент був імобілізований на маленьких часточках у колонці, що сполучається з термістором чи оточує його. Об’єми зразка має бути не менше 10 мл і система має здатність аналізувати до 30 зразків за годину. Визначена чутливість свідчить про можливість клінічного використання цього приладу. Guilbault(16) описує ферментний термістор для розпізнавання алкоголю в крові, в якому алкоголь оксидаза імобілізована на скляних кульках на проточній системі, що контролюється термістором. Система, яка була використана для аналізу алкоголю в крові, може розпізнавати до 0.2 ммоль/л метанолу, етанолу чи бутанолу з лінійністю до 2 ммоль/л . Нажаль, фермент, що був використаний, не розрізняє спирти.
Альтернативне використання термісторних приладів має місце в імуносорбентному аналізі, який має назву- “Термометричний ферментноміточний імуносорбентний аналіз”(TELISA)(20). Колонка заповнена імуносорбентом (антитіло, імобілізоване на Сефарозі CL 4B).Дослідний антиген поглинається, а мічений антиген вивільняється до потоку. При наявності субстрату порція міченого антигену зв’язується і викликає виділення теплоти. Ця система здатна до визначення 10-10 М (5мг/л) сироваточного альбуміну людини і загальний час такого аналізу (враховуючи регенерацію) складає 10 хвилин.
Калориметричні прилади можуть бути мініатюризовані, при використанні інтерферометрії. Ця технологія полягає у зсуву по фазі світла у визначаючому проміні відносно перевіряючого. Оптичне волокно може бути розширене під дією теплоти, що виділяється під час ферментної реакції, і це дає зміну у фазі світла. Система дуже чутлива до маленьких змін температури.
IV.Мікрогравіметричні та акустичні біосенсори.
П’єзоелектричні кристали можуть бути використані як гравіметричні біосенсори в імуноаналізі. Перемінний струм подається крізь п’єзоелектричний матеріал, наприклад, кварцевий кристал, викликаючи певні механічні зміни. На певній частоті коливань виникає механічний чи акустичний резонанс. Частота цього резонансу залежить від маси поверхні кристалу. Кварцевий п’єзоелектричний кристал може бути покритий Ат чи Аг, для аналізу комплементарних Аг чи Ат. Сполучення, що має місце, викликає зміну у масі на поверхні кристалу. Ця зміна у масі визначається зміною у частоті резонансу кристалу.
Sauerbrey наводить таку формулу(36) :
Df/f=–Dm/Apt
де Df/f–зміна у частоті, Dm–зміна у массі(г), А-поверхня, покрита адсорбованим матеріалом, p–густина кварцу(г/см3), t– товщина непокритого кристалу.
Більш детально J.E.Roeder та G.Bastiaans(28) описали використання поверхнево акустичного хвильового приладу в імуноаналізі. Вони виміряли зміну у частоті кварцевого кристалу, коли ще мав місце контакт з розчином антигену. Сенсор був здатний до вимірювання IgG в розведеній сироватці. Одним з недоліків такого аналізу є те, що неможливо вимірювати молекули з низькою молекулярною масою.(26,31)